An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging
نویسندگان
چکیده
Recent studies have demonstrated that the DNA methylome changes with age. This epigenetic drift may have deep implications for cellular differentiation and disease development. However, it remains unclear how much of this drift is functional or caused by underlying changes in cell subtype composition. Moreover, no study has yet comprehensively explored epigenetic drift at different genomic length scales and in relation to regulatory elements. Here we conduct an in-depth analysis of epigenetic drift in blood tissue. We demonstrate that most of the age-associated drift is independent of the increase in the granulocyte to lymphocyte ratio that accompanies aging and that enrichment of age-hypermethylated CpG islands increases upon adjustment for cellular composition. We further find that drift has only a minimal impact on in-cis gene expression, acting primarily to stabilize pre-existing baseline expression levels. By studying epigenetic drift at different genomic length scales, we demonstrate the existence of mega-base scale age-associated hypomethylated blocks, covering approximately 14% of the human genome, and which exhibit preferential hypomethylation in age-matched cancer tissue. Importantly, we demonstrate the feasibility of integrating Illumina 450k DNA methylation with ENCODE data to identify transcription factors with key roles in cellular development and aging. Specifically, we identify REST and regulatory factors of the histone methyltransferase MLL complex, whose function may be disrupted in aging. In summary, most of the epigenetic drift seen in blood is independent of changes in blood cell type composition, and exhibits patterns at different genomic length scales reminiscent of those seen in cancer. Integration of Illumina 450k with appropriate ENCODE data may represent a fruitful approach to identify transcription factors with key roles in aging and disease.
منابع مشابه
Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging.
The functional potential of hematopoietic stem cells (HSCs) declines during aging, and in doing so, significantly contributes to hematopoietic pathophysiology in the elderly. To explore the relationship between age-associated HSC decline and the epigenome, we examined global DNA methylation of HSCs during ontogeny in combination with functional analysis. Although the DNA methylome is generally ...
متن کاملInvolvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis
DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...
متن کاملReduced DNA methylation patterning and transcriptional connectivity define human skin aging
Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of i...
متن کاملDNA methylation dynamics in aging: how far are we from understanding the mechanisms?
DNA methylation is currently the most promising molecular marker for monitoring aging and predicting life expectancy. However, the mechanisms underlying age-related DNA methylation changes remain mostly undiscovered. Here we discuss the current knowledge of the dynamic nature of DNA epigenome landscape in mammals, and propose putative molecular mechanisms for aging-associated DNA epigenetic cha...
متن کاملDynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis
OBJECTIVE DNA methylation may be a stable epigenetic contributor to defining fat cell lineage. METHODS We performed reduced representation bisulfite sequencing (RRBS) and RNA-seq to depict a genome-wide integrative view of the DNA methylome and transcriptome during brown and white adipogenesis. RESULTS Our analysis demonstrated that DNA methylation is a stable epigenetic signature for brown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015